The importance of the cashew nut (Anacardium occidentale L.) coat: a review

Tereza Dantas, Natália Freitas Oliveira, Rosélia Sousa Leal


The cashew (Anacadium occidentale L.) is a major source of income for farmers in the Northeast of Brazil. The cashew nut is composed of three parts: shell, nut, and brown film- known as coat. The coat represents 1% to 3% of the nut total weight and is a rich source of polymeric hydrolysable tannins, as polyphenols. The lipid fractions are particularly comprised by fatty acids, oleic (C18: 1) and linoleic (C18: 2). This study reviewed the cashew nut coat, in light of the scientific advances achieved in recente years. The aspects examined were: separation process between the coat and the cashew nut, coat chemical composition considering nutrients and other bioactive compounds of primary and secondary metabolism, biological and microbiological activities and technological applications.

Full Text:



Lubi, M.C. and E.T. Thachil, Cashew nut shell liquid (CNSL)-a versatile monomer for polymer synthesis. Designed Monomers and polymers, 2000. 3(2): p. 123-153.

Paramashivappa, R., et al., Novel method for isolation of major phenolic constituents from cashew (Anacardium occidentale L.) Nut shell liquid. Journal of Agricultural and Food Chemistry, 2001. 49(5): p. 2548-2551.

Das, P., T. Sreelatha, and A. Ganesh, Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass and Bioenergy, 2004. 27(3): p. 265-275.

Mazzetto, S.E., D. Lomonaco, and G. Mele, Óleo da castanha de caju: oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Quimica Nova, 2009. 32(3): p. 732-741.


IBGE, Instituto Brasileiro de Geografia e Estatística (IBGE). 2011.

Pawar, S. and S. Pal, Analgesic and anti-inflammatory activity of Anacardium occidentale Root extracts. Hamdard Medicus (Pakistan), 2002.

Yusuf, S., M. Aliyu, and R. Ndanosa, Effect of aqueous extract of Anarcardium occidentale (L) stem bark on sodium and chloride transport in the rabbit colon. J. Med. Plant. Res, 2009. 3(6): p. 493-497.

Pell, S.K., Molecular systematics of the cashew family (Anacardiaceae). 2004, Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Susan Katherine Pell BS, St. Andrews Presbyterian College.

Florêncio, G.V.S.F.M., et al., O polissacarídeo do Anacardium occidentale L. na fase inflamatória do processo cicatricial de lesões cutâneas. Ciência Rural, 2006. 36(1).

Sokeng, S., et al., Hypoglycemic effect of Anacardium occidentale L. methanol extract and fractions on streptozotocin-induced diabetic rats. Research journal of medicine and medical sciences, 2007. 2(2): p. 133-137.

Akinpelu, D.A., Antimicrobial activity of Anacardium occidentale bark. Fitoterapia, 2001. 72(3): p. 286-287.

Gonçalves, G.M.S. and J. Gobbo, Antimicrobial effect of anacardium occidentale extract and cosmetic formulation development. Brazilian Archives of Biology and Technology, 2012. 55(6): p. 843-850.

Melo Cavalcante, A.A., et al., Mutagenicity, antioxidant potential, and antimutagenic activity against hydrogen peroxide of cashew (Anacardium occidentale) apple juice and cajuina. Environmental and Molecular Mutagenesis, 2003. 41(5): p. 360-369.

Trevisan, M.T.S., et al., Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food and Chemical Toxicology, 2006. 44(2): p. 188-197.

Olajide, O.A., et al., Effects of Anacardium occidentale stem bark extract on in vivo inflammatory models. Journal of Ethnopharmacology, 2004. 95(2-3): p. 139-142.

Vanderlinde, F.A., et al., Evaluation of the antinociceptive and anti-inflammatory effects of the acetone extract from Anacardium occidentale L. Brazilian Journal of Pharmaceutical Sciences, 2009. 45(3): p. 437-442.

Konan, N.A., et al., Acute, subacute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.). Journal of Ethnopharmacology, 2007. 110(1): p. 30-38.

Ushanandini, S., et al., The anti-ophidian properties of Anacardium occidentale bark extract. Immunopharmacology and Immunotoxicology, 2009. 31(4): p. 607-615.

Dahake, A.P., V.D. Joshi, and A.B. Joshi, Antimicrobial screening of different extract of Anacardium occidentale Linn. leaves. Int J ChemTech Res, 2009. 1: p. 856-858.

Sankara Subramanian, S., K.J. Joseph, and A.G.R. Nair, Polyphenols of anacardium occidentale. Phytochemistry, 1969. 8(3): p. 673.

Chaves, M.H., et al., Total phenolics, antioxidant activity and chemical constituents from extracts of Anacardium occidentale L., Anacardiaceae. Revista Brasileira de Farmacognosia, 2010. 20(1): p. 106-112.

Murthy, S.S.N., A.S.R. Anjaneyulu, and L. Ramachandra Row, Chemical examination of Anacardium occidentale. Isolation and structure determination of a novel biflavonoid-C-glycoside. Planta Medica, 1982. 45(1): p. 3-10.

Murthy, S.S.N., Semecarpuflavanone-A new biflavanone from Semecarpus anacardium Linn. Proceedings of the Indian Academy of Sciences - Chemical Sciences, 1986. 97(1): p. 63-69.

Rahman, W., et al., Prunin-6″-O-p-coumarate, a new acylated flavanone glycoside from Anacardium occidentale. Phytochemistry, 1978. 17(6): p. 1064-1065.

Kubo, I., et al., Antioxidant activity of anacardic acids. Food Chemistry, 2006. 99(3): p. 555-562.

Kamath, V. and P.S. Rajini, The efficacy of cashew nut (Anacardium occidentale L.) skin extract as a free radical scavenger. Food Chemistry, 2007. 103(2): p. 428-433.

Paiva, F.d.A., D.d.S. Garrutti, and R. da SILVA NETO, Aproveitamento industrial do caju. Embrapa Agroindústria Tropical. Documentos, 2000.

Lima, C.S.M., et al., Chemical characteristics of cape-gooseberry fruits in different sepal colors and training systems. Revista Brasileira de Fruticultura, 2009. 31(4): p. 1060-1068.

Neto, A.B.T., et al., Kinetic and physico-chemical characterization of cashew (Anacardium occidentale L.) wine. Quimica Nova, 2006. 29(3): p. 489-492.

Patel, R.N., S. Bandyopadhyay, and A. Ganesh, Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Bioresource Technology, 2006. 97(6): p. 847-853.

Andrade, T.D.J.A.D.S., et al., Antioxidant properties and chemical composition of technical Cashew Nut Shell Liquid (tCNSL). Food Chemistry, 2011. 126(3): p. 1044-1048.

Hurtado, I., Poisonous Anacardiaceae of South America. Clinics in Dermatology, 1986. 4(2): p. 183-190.

Kumar, K.P.V. and M.G. Sethuraman, Studies on oleoresinous varnishes and their natural precursors. Progress in Organic Coatings, 2004. 49(3): p. 244-251.

Mohod, A.G., Y.P. Khandetod, and A.G. Powar, Processed cashew shell waste as fuel supplement for heat generation. Energy for Sustainable Development, 2008. 12(4): p. 73-76.

Cámara, C.I., et al., Quantitative analysis of boldine alkaloid in natural extracts by cyclic voltammetry at a liquid–liquid interface and validation of the method by comparison with high performance liquid chromatography. Talanta, 2010. 83(2): p. 623-630.

Akinnusi, F., et al., Carcass characteristics and Sensory Evaluation of Meat from Rabbits fed Cashew-nut residue based diets. ASSET: An International Journal (Series A)}, 2010. 7(1): p. 19-25.

Gualberto Filho, A., Profª. Francisca Jeanne Sidrim de Figueiredo.

Lima, J.R., D.S. Garruti, and L.M. Bruno, Physicochemical, microbiological and sensory characteristics of cashew nut butter made from different kernel grades-quality. LWT - Food Science and Technology, 2012. 45(2): p. 180-185.

Russell, R.W., D.M. Warburton, and D.S. Segal, Behavioral tolerance during chronic changes in the cholinergic system. Commun. Behav. Biol, 1969. 4: p. 121-128.

Cabral, T.d.M., Avaliação dos constituintes e do potencial mutagênico do material particulado oriundo do beneficiamento artesanal da castanha do caju. 2010, Universidade de São Paulo.

Jain, R.K. and S. Kumar, Development of a cashew nut sheller. Journal of Food Engineering, 1997. 32(3): p. 339-345.

de Assis Paiva, F.F. and R.M. da Silva Neto, Processamento industrial da castanha-de-caju.

Lima, S.d.S., et al., Nível tecnológico e fatores de decisão para adoção de tecnologia na produção de caju no Ceará. 2010.

INAMASU, R., C. BISCEGLI, and F.d.A. PAIVA, Máquina pneumática para abrir castanha-de-cajú. Embrapa Instrumentação Agropecuária. Comunicado Técnico, 2006.

Azam-Ali, S. and E. Judge, Small-scale cashew nut processing. Coventry (UK): ITDG Schumacher Centre for Technology and Development Bourton on Dunsmore, 2001.

de Oliveira, V.H., Nutrição mineral do cajueiro. 1995: EMBRAPA-CNPAT.

Bishop, G.J., Refining the plant steroid hormone biosynthesis pathway. Trends in plant science, 2007. 12(9): p. 377-380.


Grangeia, C., et al., Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Research International, 2011. 44(4): p. 1029-1035.

Laughton, M.J., et al., Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and to iron ion-reducing ability. Biochemical pharmacology, 1991. 42(9): p. 1673-1681.

Quettier-Deleu, C., et al., Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of ethnopharmacology, 2000. 72(1): p. 35-42.

Sadik, C.D., H. Sies, and T. Schewe, Inhibition of 15-lipoxygenases by flavonoids: structure–activity relations and mode of action. Biochemical Pharmacology, 2003. 65(5): p. 773-781.

Andreescu, S. and O.A. Sadik, Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model. Analytical chemistry, 2004. 76(3): p. 552-560.

Ashidate, K., et al., Gentisic acid, an aspirin metabolite, inhibits oxidation of low-density lipoprotein and the formation of cholesterol ester hydroperoxides in human plasma. European journal of pharmacology, 2005. 513(3): p. 173-179.

Ivanova, D., et al., Polyphenols and antioxidant capacity of Bulgarian medicinal plants. Journal of Ethnopharmacology, 2005. 96(1): p. 145-150.

Kwon, Y.-I., et al., Inhibition of Staphylococcus aureus by phenolic phytochemicals of selected clonal herbs species of Lamiaceae family and likely mode of action through proline oxidation. Food Biotechnology, 2007. 21(1): p. 71-89.

Wojdyło, A., J. Oszmiański, and R. Czemerys, Antioxidant activity and phenolic compounds in 32 selected herbs. Food chemistry, 2007. 105(3): p. 940-949.

M Calderon-Montano, J., et al., A review on the dietary flavonoid kaempferol. Mini reviews in medicinal chemistry, 2011. 11(4): p. 298-344.

Donkoh, A., et al., Evaluation of nutritional quality of dried cashew nut testa using laboratory rat as a model for pigs. The Scientific World Journal, 2012. 2012.

King, A. and G. Young, Characteristics and occurrence of phenolic phytochemicals. Journal of the American Dietetic Association, 1999. 99(2): p. 213-218.

Taiz, L. and E. Zeiger, Plant Physiology. 2006. 672.

Simões, C., et al., In review in Portuguese, Farmacognosia: Da planta ao medicamento 5th edn. Universidade/UFRGS/Edda/EFSC, Rio Grande do Sul, Brazil, 2007: p. 49-108.

Trox, J., et al., Bioactive compounds in cashew nut (anacardium occidentale l.) kernels: Effect of different shelling methods. Journal of Agricultural and Food Chemistry, 2010. 58(9): p. 5341-5346.

Morais, S., et al., Highly unsaturated fatty acid synthesis in Atlantic salmon: Characterization of ELOVL5- and ELOVL2-like elongases. Marine Biotechnology, 2009. 11(5): p. 627-639.

Tanamati, A., et al., Comparative study of total lipids in beef using chlorinated solvent and low-toxicity solvent methods. Journal of the American Oil Chemists' Society, 2005. 82(6): p. 393-397.

Maia, G. and J. Stull, Fatty acid and lipid composition of cashews (Anacardium occidentale L.). Ciencia Agronomica, 1977. 7: p. 49-51.

Trox, J., et al., Catechin and epicatechin in testa and their association with bioactive compounds in kernels of cashew nut (Anacardium occidentale L.). Food Chemistry, 2011. 128(4): p. 1094-1099.

Thurnhofer, S., K. Lehnert, and W. Vetter, Exclusive quantification of methyl-branched fatty acids and minor 18: 1-isomers in foodstuff by GC/MS in the SIM mode using 10, 11-dichloroundecanoic acid and fatty acid ethyl esters as internal standards. European Food Research and Technology, 2008. 226(5): p. 975-983.

Scherz, H. and F. Senser, Food composition and nutrition tables. 1994: Medpharm GmbH Scientific Publishers.

Boye, J.I., L. L’Hocine, and S.H. Rajamohamed, Processing foods without soybean ingredients. Allergen management in the food industry, 2010: p. 355-391.

Gunstone, F.D., 5 Minor Specialty Oils. Nutraceutical and Specialty Lipids and their Co-Products, 2006: p. 91.

Kota, L., Total folate in peanuts and peanut products. 2008, University of Georgia.

Benatti, P., et al., Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. Journal of the American College of Nutrition, 2004. 23(4): p. 281-302.

Dixon, R.A., Plant natural products: the molecular genetic basis of biosynthetic diversity. Current opinion in biotechnology, 1999. 10(2): p. 192-197.

Peres, L., Metabolismo secundário. Disponível no site, 2004.

Naczk, M. and F. Shahidi, Extraction and analysis of phenolics in food. Journal of Chromatography A, 2004. 1054(1-2): p. 95-111.

Matos, F.d.A., Introdução à fitoquímica experimental. 1997: edições UFC.

Kannan, V.R., et al., Elementary chemical profiling and antifungal properties of cashew (Anacardium occidentale L.) Nuts. Botany Research International, 2009. 2(4): p. 253-257.

Tedong, L., et al., Antihyperglycemic and renal protective activities of Anacardium occidentale (Anacardiaceae) leaves in streptozotocin induced diabetic rats. African Journal of Traditional, Complementary and Alternative Medicines, 2006. 3(1): p. 23-35.

Benavente-Garcıa, O., et al., Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 2000. 68(4): p. 457-462.

Soong, Y.Y. and P.J. Barlow, Antioxidant activity and phenolic content of selected fruit seeds. Food Chemistry, 2004. 88(3): p. 411-417.

Rockenbach, I.I., et al., Influência do solvente no conteúdo total de polifenóis, antocianinas e atividade antioxidante de extratos de bagaço de uva (Vitis vinifera) variedades Tannat e Ancelota. Ciência e Tecnologia de Alimentos, 2008. 28: p. 238-244.

Chandrasekara, N. and F. Shahidi, Antioxidative potential of cashew phenolics in food and biological model systems as affected by roasting. Food Chemistry, 2011. 129(4): p. 1388-1396.

Hayase, F., et al., Scavenging of active oxygens by melanoidins. Agricultural and Biological Chemistry, 1989. 53(12): p. 3383-3385.

Jeong, S.M., et al., Effect of seed roasting conditions on the antioxidant activity of defatted sesame meal extracts. Journal of food science, 2004. 69(5): p. C377-C381.

Şahin, H., et al., Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. European Food Research and Technology, 2009. 230(1): p. 155-161.

Chandrasekara, N. and F. Shahidi, Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. Journal of Agricultural and Food Chemistry, 2011. 59(9): p. 5006-5014.

Shahidi, F., C. Alasalvar, and C.M. Liyana-Pathirana, Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L) and hazelnut byproducts. Journal of Agricultural and Food Chemistry, 2007. 55(4): p. 1212-1220.

Yu, J., et al., Peanut skin procyanidins: Composition and antioxidant activities as affected by processing. Journal of Food Composition and Analysis, 2006. 19(4): p. 364-371.

Locatelli, M., et al., Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food Chemistry, 2010. 119(4): p. 1647-1655.

Oldoni, T.L.C., Isolamento e identificação de compostos com atividade antioxidante de uma nova variedade de própolis brasileira produzida por abelhas da espécie Apis mellifera. 2007, Escola Superior de Agricultura “Luiz de Queiroz.

Melo, P.S., et al., Phenolic composition and antioxidant activity of agroindustrial residues. Ciência Rural, 2011. 41(6): p. 1088-1093.

Colaric, M., et al., Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. Journal of Agricultural and Food Chemistry, 2005. 53(16): p. 6390-6396.

Wijeratne, S.S.K., M.M. Abou-Zaid, and F. Shahidi, Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 2006. 54(2): p. 312-318.

Pillai, M., K. Kedlaya, and R. Selvarangan, Cashew seed skin as a tanning material. Leather Science, 1963. 10: p. 317.

Neiva, T.J., et al., Evaluation of platelet aggregation in platelet concentrates: storage implications. Revista Brasileira de Hematologia e Hemoterapia, 2003. 25(4): p. 207-212.

Lakhanpal, P. and D.K. Rai, Quercetin: a versatile flavonoid. Internet Journal of Medical Update, 2007. 2(2): p. 22-37.

Dubey, R.K., B.L. Mandhyan, and N.K. Khandelwal, Steaming and pressing - and integrated approach for more oil recovery. Journal of the Institution of Engineers (India): Agricultural Engineering Division, 1988. 69 pt 1: p. 1-3.

Cadenas, E., Basic mechanisms of antioxidant activity. Biofactors, 1997. 6(4): p. 391-397.

Ferreira, I.C., et al., Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry, 2007. 100(4): p. 1511-1516.

Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 2007. 39(1): p. 44-84.

Chung, K.-T., et al., Tannins and human health: a review. Critical reviews in food science and nutrition, 1998. 38(6): p. 421-464.

Krinsky, N.I. and E.J. Johnson, Carotenoid actions and their relation to health and disease. Molecular aspects of medicine, 2005. 26(6): p. 459-516.

Biesalski, H.K., Vitamin E requirements in parenteral nutrition. Gastroenterology, 2009. 137(5): p. S92-S104.

Awaad, A.S. and N.A. Al-Jaber, Antioxidant natural plant. RPMP Ethnomedicine: Source & Mechanism, 2010. 27: p. 1-35.

Al-Jaber, N.A., A.S. Awaad, and J.E. Moses, Review on some antioxidant plants growing in Arab world. Journal of Saudi Chemical Society, 2011. 15(4): p. 293-307.

Shahidi, F., P. Janitha, and P. Wanasundara, Phenolic antioxidants. Critical reviews in food science & nutrition, 1992. 32(1): p. 67-103.

Mastro-Durán, R. and R. Borja-Padilla, Antioxidant activity of natural sterols and organic acids. Grasas y Aceites, 1993. 44(3): p. 208-212.

Brenna, O.V. and E. Pagliarini, Multivariate analysis of antioxidant power and polyphenolic composition in red wines. Journal of Agricultural and Food Chemistry, 2001. 49(10): p. 4841-4844.

Yildirim, A., A. Mavi, and A.A. Kara, Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of agricultural and food chemistry, 2001. 49(8): p. 4083-4089.

Zamora, R., M.M. León, and F.J. Hidalgo, Free radical-scavenging activity of nonenzymatically-browned phospholipids produced in the reaction between phosphatidylethanolamine and ribose in hydrophobic media. Food Chemistry, 2011. 124(4): p. 1490-1495.

Brand-Williams, W., M. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 1995. 28(1): p. 25-30.

Alam, M.N., N.J. Bristi, and M. Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 2013. 21(2): p. 143-152.

Badarinath, A., et al., A review on in-vitro antioxidant methods: comparisions, correlations and considerations. International Journal of PharmTech Research, 2010. 2(2): p. 1276-1285.

Sánchez de Medina, V.n., et al., Quality and stability of edible oils enriched with hydrophilic antioxidants from the olive tree: The role of enrichment extracts and lipid composition. Journal of agricultural and food chemistry, 2011. 59(21): p. 11432-11441.

Antolovich, M., et al., Methods for testing antioxidant activity. Analyst, 2002. 127(1): p. 183-198.

González-Montelongo, R., M.G. Lobo, and M. González, Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chemistry, 2010. 119(3): p. 1030-1039.

Lafka, T.-I., V. Sinanoglou, and E.S. Lazos, On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chemistry, 2007. 104(3): p. 1206-1214.

Li, H., et al., Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chemistry, 2012. 130(4): p. 928-936.

Zarena, A.S. and K.U. Sankar, A study of antioxidant properties from Garcinia mangostana L. pericarp extract. Acta Sci Pol Technol Aliment, 2009. 8: p. 23-34.

Zarena, A. and K.U. Sankar, Supercritical carbon dioxide extraction of xanthones with antioxidant activity from Garcinia mangostana: Characterization by HPLC/LC–ESI-MS. The Journal of Supercritical Fluids, 2009. 49(3): p. 330-337.

Chaves, M.H., et al., Fenóis totais, atividade antioxidante e constituintes químicos de extratos de Anacardium occidentale L., Anacardiaceae. Rev Bras Farmacogn, 2010. 20: p. 106-112.

Pradeep, S. and M. Guha, Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food chemistry, 2011. 126(4): p. 1643-1647.

Wijeratne, S.S., M.M. Abou-Zaid, and F. Shahidi, Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 2006. 54(2): p. 312-318.

Chaves, M.H., et al., Total phenolics, antioxidant activity and chemical constituents from extracts of Anacardium occidentale L., Anacardiaceae. Brazilian Journal of Pharmacognosy, 2010. 20(1): p. 106-112.

Gilani, A.H., Atta-ur-Rahman. 2005. Trends in ethnopharmacology. J. Ethnopharmacol. 100: p. 43-49.

Atta-ur-Rahman, Z.S., et al., Some chemical constituents of Terminalia glaucescens and their enzymes inhibition activity. Z Naturforsch, 2005. 13: p. 347-350.

Grabley, S. and R. Thiericke, Bioactive agents from natural sources: trends in discovery and application, in Thermal Biosensors, Bioactivity, Bioaffinitty. 1999, Springer. p. 101-154.

Grabley, S. and R. Thiericke, The impact of natural products on drug discovery. Drug discovery from nature. Springer, New York Berlin Heidelberg, 1999: p. 3-37.

Desai, N.C., et al., Degumming of vegetable oil by membrane technology. Indian Journal of Chemical Technology, 2002. 9(6): p. 529-534.

Patro, C. and R. Behera, Cashew helps to fix sand dunes in Orissa. Indian Farming, 1979. 28(12): p. 31-32.

Esimone, C., J. Okonta, and C. Ezugwu, Blood sugar lowering effect of Anacardium occidentale leaf extract in experimental rabbit model. Journal of Natural Remedies, 2001. 1(1): p. 60-63.

Thomas, M.M.G. and J. Barbosa Filho, Anti-inflammatory actions of tannins isolated from the bark of Anacardwm occidentale L. Journal of ethnopharmacology, 1985. 13(3): p. 289-300.

Kubo, J., J.R. Lee, and I. Kubo, Anti-Helicobacter pylori agents from the cashew apple. Journal of Agricultural and Food Chemistry, 1999. 47(2): p. 533-537.

Laurens, A., S. Mboup, and P. Giono-Barber, Study of antimicrobial activity of Anacardium occidentale L. Annales Pharmaceutiques Francaises, 1982. 40(2): p. 143-146.

Kudi, A.C., et al., Screening of some Nigerian medicinal plants for antibacterial activity. Journal of Ethnopharmacology, 1999. 67(2): p. 225-228.

Falcão, H.d.S., et al., Review of the plants with anti-inflammatory activity studied in Brazil. Revista Brasileira de Farmacognosia, 2005. 15(4): p. 381-391.

Thomas, M.L.R.M.G. and J.M.B. Filho, Anti-inflammatory actions of tannins isolated from the bark of Anacardwm occidentale L. Journal of Ethnopharmacology, 1985. 13(3): p. 289-300.

Oliveira, F.d. and M.L. Saito, Alguns vegetais brasileiros empregados no tratamento da diabetes. Rev. bras. farmacogn, 1989. 2: p. 170-96.

Kamtchouing, P., et al., Protective role of Anacardium occidentale extract against streptozotocin-induced diabetes in rats. Journal of ethnopharmacology, 1998. 62(2): p. 95-99.

Barbosa-Filho, J.M., et al., Plants and their active constituents from South, Central, and North America with hypoglycemic activity. Revista Brasileira de Farmacognosia, 2005. 15(4): p. 392-413.

Kubo, I., I. Kinst-Hori, and Y. Yokokawa, Tyrosinase inhibitors from Anacardium occidentale fruits. Journal of Natural Products, 1994. 57(4): p. 545-551.

AGUIAR, F. and L. Lins, Ação hipoglicemiante da entrecasca de Anacardium occidentale L. An. Fac. Med. Univ. Recife, 1958. 18(1): p. 263.

Aguiar, F., J. Cardoso, and R. Azoubel, Novas considerações sobre o efeito hipoglicemiante da Anacardium occidentale L. An. Fac. Med. Univ. Recife, 1959. 19(1): p. 353.

Diniz, M., et al., Memento fitoterápico. As plantas como alternativa Terapêutica: aspectos populares e científicos. João Pessoa: Editora Universitária/UFPB, 1998.

Barrett, B., Medicinal plants of Nicaragua’s Atlantic coast. Economic Botany, 1994. 48(1): p. 8-20.

Okamoto, M.K.H., Estudo das atividades cicatrizante e antimicrobiana do extrato glicólico e do gel de Psidium guajava L. e estudo da estabilidade do gel. 2010, Universidade de São Paulo.

de Melo, A.F.M., et al., Avaliação da toxicidade subcrônica do extrato bruto seco de Anacardium occidentale Linn em cães-DOI: 10.4025/actascihealthsci. v28i1. 1112. Acta Scientiarum. Health Science, 2008. 28(1): p. 37-41.

MAIA, G.C., Aproveitamento industrial do caju (Anacardium occidentale); relatorio final. 1982: NUTEC.

Lim, T., Anacardium occidentale, in Edible Medicinal and Non-Medicinal Plants. 2012, Springer. p. 45-68.

Araujo, J.R.G., et al., Imbibition and position of seed on the germination of seedlings of dwarf-precocious cashew rootstocks. Revista Brasileira de Fruticultura, 2009. 31(2): p. 552-558.

Haslam, J. and H.A. Willis, Identification and analysis of plastics, in Identification and analysis of plastics. 1965, Van Nostrand. p. 483.

Mota, M., Estudos antiinflamatório e análise química da casca do Anacardium occidentale L. Estudo antiinflamatório e análise química da casca do Anacardium occidentale L, 1982.

de SOUZA, C.P., et al., О USO DA CASCA DA CASTANHA DO CAJU, Anacardium occidentale, COMO MOLUSCICIDA ALTERNATIVO. Revista do Instituto de Medicina Tropical de São Paulo, 1992. 34(5): p. 459-466.

Mendes, N.M., et al., Atividade moluscicida da mistura de ácidos 6-n-alquil salicílicos (ácido anacárdico) e dos seus complexos com cobre (II) e chumbo (II). Rev. Soc. bras. Med. trop, 1990. 23: p. 217-223.

Amorozo, M.C.d.M., Use and diversity of medicinal plants in Santo Antonio do Leverger, MT, Brazil. Acta Botanica Brasilica, 2002. 16(2): p. 189-203.

Nascimento, G.G., et al., Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian journal of microbiology, 2000. 31(4): p. 247-256.

Pereira, J.V., et al., In vitro antimicrobial activity of an extract from Anacardium occidentale Linn. on Streptococcus mitis, Streptococcus mutans and Streptococcus sanguis. Odontol. clín.-cient, 2006. 5(2): p. 137-141.

Araújo, C.R.F., et al., Atividade antifúngica in vitro da casca do anacardium occidentale linn. sobre leveduras do gênero candida. Arq. odontol, 2005. 41(03): p. 263-270.

Gonçalves, J.L.S., et al., In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. Journal of Ethnopharmacology, 2005. 99(3): p. 403-407.

Silva, A.M.M., et al., Alkaloids from Prosopis juliflora leaves induce glial activation, cytotoxicity and stimulate NO production. Toxicon, 2007. 49(5): p. 601-614.

Braga, F.G., et al., Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. Journal of Ethnopharmacology, 2007. 111(2): p. 396-402.

Kubo, I., et al., Antitumor agents from the cashew (Anacardium occidentale) apple juice. Journal of Agricultural and Food Chemistry®, 1993. 41(6): p. 1112-1115.

LIMA, C.A.d.A., G.M. Pastore, and E.D.P.d.A. LIMA, Estudo da atividade antimicrobiana dos ácidos anacárdicos do óleo da casca da castanha de caju (CNSL) dos clones de cajueiro-anão-precoce CCP-76 e CCP-09 em cinco estágios de maturação sobre microrganismos da cavidade bucal. Sociedade Brasileira de Ciência e Tecnologia de Alimentos, 2000.

Dragland, S., et al., Several culinary and medicinal herbs are important sources of dietary antioxidants. The Journal of nutrition, 2003. 133(5): p. 1286-1290.

Moure, A., et al., Natural antioxidants from residual sources. Food chemistry, 2001. 72(2): p. 145-171.


DA CASTANHA-DE-CAJU, A.A., A Amêndoa da Castanha-de-caju: Composição e Importância dos Ácidos Graxos–Produção e Comércio Mundiais.

Alcântara, S.R., et al., Isotermas de adsorção do pedúnculo seco do caju. Revista Brasileira de Engenharia Agrícola e Ambiental, 2009. 13(1): p. 81-87.

Voigt, E.L., et al., Source–sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. Journal of Plant Physiology, 2009. 166(1): p. 80-89.

Welsch, C.W., Relationship between dietary fat and experimental mammary tumorigenesis: a review and critique. Cancer research, 1992. 52(7 Supplement): p. 2040s-2048s.

Carroll, K. and H. Khor, Effects of level and type of dietary fat on incidence of mammary tumors induced in female Sprague-Dawley rats by 7, 12-dimethylbenz (α) anthracene. Lipids, 1971. 6(6): p. 415-420.

Muller, W.J., et al., Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 1988. 54(1): p. 105-115.

Cohen, L.A., et al., Dietary fat and mammary cancer. I. Promoting effects of different dietary fats on N-nitrosomethylurea-induced rat mammary tumorigenesis. Journal of the National Cancer Institute, 1986. 77(1): p. 33-42.

Brockman, H., H. Stack, and M. Waters, Antimutagenicity profiles of some natural substances. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1992. 267(2): p. 157-172.

Dayton, S., S. Hashimoto, and J. Wollman, Effect of high-oleic and high-linoleic safflower oils on mammary tumors induced in rats by 7, 12-dimethylbenz (alpha) anthracene. The Journal of nutrition, 1977. 107(8): p. 1353-1360.

Sundram, K., et al., Effect of dietary palm oils on mammary carcinogenesis in female rats induced by 7, 12-dimethylbenz (a) anthracene. Cancer Research, 1989. 49(6): p. 1447-1451.

Corona, G., J. Spencer, and M. Dessi, Extra virgin olive oil phenolics: absorption, metabolism, and biological activities in the GI tract. Toxicology and industrial health, 2009. 25(4-5): p. 285-293.

Escrich, E., R. Moral, and M. Solanas, Olive oil, an essential component of the Mediterranean diet, and breast cancer. Public health nutrition, 2011. 14(12A): p. 2323-2332.

Timsina, B., M. Shukla, and V.K. Nadumane, A review of few essential oils and their anticancer property. International Journal of Shoulder Surgery, 2012. 6(2).

Juan, M.E., et al., Cancer Chemopreventive Activity of Hydroxytyrosol: A Natural Antioxidant from Olives and Olive Oil. 2010.

Maggiora, M., et al., An overview of the effect of linoleic and conjugated‐linoleic acids on the growth of several human tumor cell lines. International Journal of Cancer, 2004. 112(6): p. 909-919.

Welsch, C.W., et al., Selenium and the genesis of murine mammary tumors. Carcinogenesis, 1981. 2(6): p. 519-522.

Rogers, A.E. and W.C. Wetsel, Mammary carcinogenesis in rats fed different amounts and types of fat. Cancer research, 1981. 41(9 Part 2): p. 3735-3737.

Brown, R., Effects of dietary fat on incidence of spontaneous and induced cancer in mice. Cancer research, 1981. 41(9 Part 2): p. 3741-3742.

Steinmetz, K.A. and J.D. Potter, Vegetables, fruit, and cancer prevention: a review. Journal of the American Dietetic Association, 1996. 96(10): p. 1027-1039.

Maillard, M.-N. and C. Berset, Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt. Journal of Agricultural and Food Chemistry, 1995. 43(7): p. 1789-1793.

Yildirim, T., et al., Giant anharmonicity and nonlinear electron-phonon coupling in MgB 2: a combined first-principles calculation and neutron scattering study. Physical review letters, 2001. 87(3): p. 037001.

Baluchnejadmojarad, T., et al., Beneficial effect of aqueous garlic extract on the vascular reactivity of streptozotocin-diabetic rats. Journal of ethnopharmacology, 2003. 85(1): p. 139-144.

Carvalho, C.A.d., et al., Antioxidant activity of Jacaranda decurrens Cham., Bignoniaceae. Revista Brasileira de Farmacognosia, 2009. 19(2B): p. 592-598.

Bravo, K., et al., Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). Journal of the Science of Food and Agriculture, 2014.

Ranilla, L.G., et al., Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 2010. 101(12): p. 4676-4689.

Kalt, W., et al., Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 1999. 47(11): p. 4638-4644.

Velioglu, Y., et al., Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry, 1998. 46(10): p. 4113-4117.

Atoui, A.K., et al., Tea and herbal infusions: their antioxidant activity and phenolic profile. Food chemistry, 2005. 89(1): p. 27-36.

Azam, S., et al., Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicology in vitro, 2004. 18(5): p. 555-561.

Halliwell, B., et al., The characterization of antioxidants. Food and Chemical Toxicology, 1995. 33(7): p. 601-617.

Salah, N., et al., Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of biochemistry and biophysics, 1995. 322(2): p. 339-346.

Tang, S., et al., Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chemistry, 2002. 76(1): p. 45-51.

Shahidi, F., et al., Endogenous antioxidants and stability of sesame oil as affected by processing and storage. JAOCS, Journal of the American Oil Chemists' Society, 1997. 74(2): p. 143-148.

Muzolf, M., et al., pH-dependent radical scavenging capacity of green tea catechins. Journal of agricultural and food chemistry, 2008. 56(3): p. 816-823.

Chung, K.-T., C.-I. Wei, and M.G. Johnson, Are tannins a double-edged sword in biology and health? Trends in Food Science & Technology, 1998. 9(4): p. 168-175.

Yoda, Y., et al., Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. Journal of Infection and Chemotherapy, 2004. 10(1): p. 55-58.

Dykes, G.A., R. Amarowicz, and R.B. Pegg, Enhancement of nisin antibacterial activity by a bearberry (Arctostaphylos uva-ursi) leaf extract. Food microbiology, 2003. 20(2): p. 211-216.

Yanagawa, Y., et al., A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Current microbiology, 2003. 47(3): p. 0244-0249.

Yee, Y.K. and M.W.L. Koo, Anti‐Helicobacter pylori activity of Chinese tea: in vitro study. Alimentary pharmacology & therapeutics, 2000. 14(5): p. 635-638.

Gupta, S., B. Saha, and A. Giri, Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a review. Mutation Research/Reviews in Mutation Research, 2002. 512(1): p. 37-65.

Wang, Z.Y., et al., Antimutagenic activity of green tea polyphenols. Mutation Research/Genetic Toxicology, 1989. 223(3): p. 273-285.

Kohno, M., et al., CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. International journal of cancer, 2002. 97(3): p. 336-343.

Yamamoto, Y. and H. Nakamura, 1-Carboranyl-3-(2-methylaziridino)-2-propanol. Synthesis, selective uptake by B-16 melanoma, and selective cytotoxicity toward cancer cells. Journal of medicinal chemistry, 1993. 36(15): p. 2232-2234.

Sazuka, M., et al., Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells. Cancer letters, 1995. 98(1): p. 27-31.

Taniguchi, S., T. Iwamura, and T. Katsuki, Correlation between spontaneous metastatic potential and type I collagenolytic activity in a human pancreatic cancer cell line (SUIT-2) and sublines. Clinical & experimental metastasis, 1992. 10(4): p. 259-266.

Nishida, N., et al., Amplification and overexpression of the cyclin D1 gene in aggressive human hepatocellular carcinoma. Cancer research, 1994. 54(12): p. 3107-3110.

Nakane, H. and K. Ono, Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and cellular deoxyribonucleic and ribonucleic acid polymerases. Biochemistry, 1990. 29(11): p. 2841-2845.

Nakane, H. and K. Ono. Differential inhibition of HIV-reverse transcriptase and various DNA and RNA polymerases by some catechin derivatives. in Nucleic acids symposium series. 1988.

Moore, P.S. and C. Pizza, Observations on the inhibition of HIV-1 reverse transcriptase by catechins. Biochem. J, 1992. 288: p. 717-719.

Hara, Y. and T. Suzuki, Administering epigallocatechin gallate, theaflavin. theaflavin mono (di) gallate. 1989, Google Patents.

Rains, T.M., S. Agarwal, and K.C. Maki, Antiobesity effects of green tea catechins: a mechanistic review. The Journal of nutritional biochemistry, 2011. 22(1): p. 1-7.

Zaveri, N.T., Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life sciences, 2006. 78(18): p. 2073-2080.

Ohmori, Y., et al., Antiallergic constituents from oolong tea stem. Biological and Pharmaceutical Bulletin, 1995. 18(5): p. 683-686.

Mitsumoto, M., et al., Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. Meat Science, 2005. 69(4): p. 773-779.

O'Sullivan, A., et al., Use of natural antioxidants to stabilize fish oil systems. Journal of Aquatic Food Product Technology, 2005. 14(3): p. 75-94.

Tang, S., et al., Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Research International, 2001. 34(8): p. 651-657.

Chen, Z. and P. Chan, Antioxidative activity of green tea catechins in canola oil. Chemistry and Physics of Lipids, 1996. 82(2): p. 163-172.

Surco-Laos, F., et al., Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Research International, 2012. 46(2): p. 514-521.

González-Manzano, S., et al., Oxidative status of stressed Caenorhabditis elegans treated with epicatechin. Journal of agricultural and food chemistry, 2012. 60(36): p. 8911-8916.


  • There are currently no refbacks.


2349-4425 (Online)


Copyright 2010-2014 © All rights reserved by Yellow Loop